JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter.

Leukocyte adhesion deficiency II (LAD II) is characterized by the lack of fucosylated glycoconjugates, including selectin ligands, causing immunodeficiency and severe mental and growth retardation. No deficiency in fucosyltransferase activities or in the activities of enzymes involved in GDP-fucose biosynthesis has been found. Instead, the transport of GDP-fucose into isolated Golgi vesicles of LAD II cells appeared to be reduced. To identify the gene mutated in LAD II, we cloned 12 cDNAs from Caenorhabditis elegans, encoding multi-spanning transmembrane proteins with homology to known nucleotide sugar transporters, and transfected them into fibroblasts from an LAD II patient. One of these clones re-established expression of fucosylated glycoconjugates with high efficiency and allowed us to identify a human homolog with 55% identity, which also directed re-expression of fucosylated glycoconjugates. Both proteins were localized to the Golgi. The corresponding endogenous protein in LAD II cells had an R147C amino acid change in the conserved fourth transmembrane region. Overexpression of this mutant protein in cells from a patient with LAD II did not rescue fucosylation, demonstrating that the point mutation affected the activity of the protein. Thus, we have identified the first putative GDP-fucose transporter, which has been highly conserved throughout evolution. A point mutation in its gene is responsible for the disease in this patient with LAD II.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app