COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue.

BACKGROUND: The TERMINAL FLOWER 1 (TFL1) gene of Arabidopsis plays an important role in regulating flowering time and in maintaining the fate of inflorescence meristem (IM). TFL1 is a homologue of CENTRORADIALIS (CEN) from Antirrhinum, which is only involved in IM maintenance. Recent mutational studies and the genome project revealed that TFL1 belongs to a small gene family in Arabidopsis, in which functional divergence may have occurred among the members.

RESULTS: We found a new member of the TFL1 gene family, which is mapped on chromosome 2 of Arabidopsis. The predicted protein sequence encoded by this gene is more closely related to that of CEN than other Arabidopsis TFL1 homologues (and therefore named ATC for Arabidopsis thaliana CENTRORADIALIS homologue). Transgenic plants constitutively expressing the ATC gene (35S:ATC), in either wild-type or tfl1 mutant backgrounds, showed a phenotype similar to that observed in transgenic plants constitutively expressing the TFL1 gene. However, in contrast to TFL1, the expression of ATC was only detected in the hypocotyl of young plants, and not in the IM. In addition, an atc loss-of-function mutant, isolated by screening a T-DNA library, showed no phenotypes that were similar to those of tfl1 mutants.

CONCLUSION: The phenotypes of transgenic plants over-expressing ATC suggest that the ATC protein can functionally substitute for TFL1. However, the pattern and level of expression and the loss-of-function phenotype indicate that ATC does not participate in the regulation of IM identity, but rather has a role that is different from that of TFL1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app