Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone

Y Miyazaki, A Mahankali, M Matsuda, L Glass, S Mahankali, E Ferrannini, K Cusi, L J Mandarino, R A DeFronzo
Diabetes Care 2001, 24 (4): 710-9

OBJECTIVE: To elucidate the effects of pioglitazone treatment on glucose and lipid metabolism in patients with type 2 diabetes.

RESEARCH DESIGN AND METHODS: A total of 23 diabetic patients (age 30-70 years BMI < 36 kg/m2) who being treated with a stable dose of sulfonylurea were randomly assigned to receive either placebo (n = 11) or pioglitazone (45 mg/day) (n = 12) for 16 weeks. Before and after 16 weeks of treatment, all subjects received a 75-g oral glucose tolerance test (OGTT) and hepatic peripheral insulin sensitivity was measured with a two-step euglycemic insulin (40 and 160 mU x min(-1) x m(-2) clamp performed with 3-[3H]glucose and indirect calorimetry HbA1c measured monthly throughout the study period.

RESULTS: After 16 weeks of pioglitazone treatment, the fasting plasma glucose (FPG; 184 +/- 15 to 135 +/- 11 mg/dl, P < 0.01), mean plasma glucose during OGTT(293 +/- 12 to 225 +/- 14 mg/dl, P < 0.01), and HbA1c (8.9 +/- 0.3 to 7.2 +/- 0.5%, P < 0.01 ) decreased significantly without change in fasting or glucose-stimulated insulin/C-peptide concentrations. Fasting plasma free fatty acid (FFA; 647 +/- 39 to 478 +/- 49) microEq/l, P < 0.01) and mean plasma FFA during OGTT (485 +/- 30 to 347 +/- 33 microEq/l, P < 0.01) decreased significantly after pioglitazone treatment. Before and after pioglitazone treatment, basal endogenous glucose prodution (EGP) and FPG were strongly correlated (r = 0.67, P < 0.01). EGP during the first insulin clamp step was significantly decreased after pioglitazone treatment (P < 0.05) whereas insulin-stimulated total and nonoxidative glucose disposal during the second insulin clamp was increased (P < 0.01). The change in FPG was related to the change in basal EGP, EGP during the first insulin clamp step, and total glucose disposal during the second insulin clamp step. The change in mean plasma glucose concentration during the OGGTT was strongly related to the change in total body glucose disposl during the second insulin clamp step.

CONCLUSIONS: These results suggest that pioglitazone therapy in type 2 diabetic patients decreases lasting and postprandial plasma glucose levels by improving hepatic and peripheral (muscle) tissue sensitivity to insulin.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"