COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Empirical Bayes estimation of random effects parameters in mixed effects logistic regression models.

Biometrics 1999 December
We extend an approach for estimating random effects parameters under a random intercept and slope logistic regression model to include standard errors, thereby including confidence intervals. The procedure entails numerical integration to yield posterior empirical Bayes (EB) estimates of random effects parameters and their corresponding posterior standard errors. We incorporate an adjustment of the standard error due to Kass and Steffey (KS; 1989, Journal of the American Statistical Association 84, 717-726) to account for the variability in estimating the variance component of the random effects distribution. In assessing health care providers with respect to adult pneumonia mortality, comparisons are made with the penalized quasi-likelihood (PQL) approximation approach of Breslow and Clayton (1993, Journal of the American Statistical Association 88, 9-25) and a Bayesian approach. To make comparisons with an EB method previously reported in the literature, we apply these approaches to crossover trials data previously analyzed with the estimating equations EB approach of Waclawiw and Liang (1994, Statistics in Medicine 13, 541-551). We also perform simulations to compare the proposed KS and PQL approaches. These two approaches lead to EB estimates of random effects parameters with similar asymptotic bias. However, for many clusters with small cluster size, the proposed KS approach does better than the PQL procedures in terms of coverage of nominal 95% confidence intervals for random effects estimates. For large cluster sizes and a few clusters, the PQL approach performs better than the KS adjustment. These simulation results agree somewhat with those of the data analyses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app