JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Familial dyskinesia and facial myokymia (FDFM): a novel movement disorder.

We describe here familial dyskinesia and facial myokymia (FDFM), a novel autosomal dominant disorder characterized by adventitious movements that sometimes appear choreiform and that are associated with perioral and periorbital myokymia. We report a 5-generation family with 18 affected members (10 males and 8 females) with FDFM. The disorder has an early childhood or adolescent onset. The involuntary movements are paroxysmal at early ages, increase in frequency and severity, and may become constant in the third decade. Thereafter, there is no further deterioration, and there may even be improvement in old age. The adventitious movements are worsened by anxiety but not by voluntary movement, startle, caffeine, or alcohol. The disease is socially disabling, but there is no intellectual impairment or decrease in lifespan. A candidate gene and haplotype analysis was performed in 9 affected and 3 unaffected members from 3 generations of this family using primers for polymorphic loci closely flanking or within genes of interest. We excluded linkage to 11 regions containing genes associated with chorea and myokymia: 1) the Huntington disease gene on chromosome 4p; 2) the paroxysmal dystonic choreoathetosis gene at 2q34; 3) the dentatorubral-pallidoluysian atrophy gene at 12p13; 4) the choreoathetosis/spasticity disease locus on 1p that lies in a region containing a cluster of potassium (K+) channel genes; 5) the episodic ataxia type 1 (EA1) locus on 12p that contains the KCNA1 gene and two other voltage-gated K+ channel genes, KCNA5 and KCNA6; 6) the chorea-acanthocytosis locus on 9q21; 7) the Huntington-like syndrome on 20p; 8) the paroxysmal kinesigenic dyskinesia locus on 16p11.2-q11.2; 9) the benign hereditary chorea locus on 14q; 10) the SCA type 5 locus on chromosome 11; and 11) the chromosome 19 region that contains several ion channels and the CACNA1A gene, a brain-specific P/Q-type calcium channel gene associated with ataxia and hemiplegic migraine. Our results provide further evidence of genetic heterogeneity in autosomal dominant movement disorders and suggest that a novel gene underlies this new condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app