Add like
Add dislike
Add to saved papers

Influence of electrolyte abnormalities on interlead variability of ventricular repolarization times in 12-lead electrocardiography.

Increased QT dispersion (QT(d)) has been associated with increased risk for ventricular arrhythmias. Pathologic extracellular electrolyte concentrations may result in ventricular arrhythmias. The aim of this study was to evaluate the effect of electrolyte abnormalities on QT(d). Ten consecutive patients with isolated electrolyte abnormalities were selected for each of the following groups: hypokalemia, hyperkalemia, hypercalcemia, hypocalcemia, hypomagnesemia, and normal controls. Standard 12-lead electrocardiography was performed for each patient and average QT, JT, and RR intervals were calculated for each lead. Dispersion of QT, JT (JT(d)), and QTc (QTc(d)) intervals were calculated as the range between the longest and shortest measurements. Compared with controls, only patients with hypokalemia had a greater QT(d) (115 +/- 31 vs. 49 +/- 15 ms), JT(d) (116 +/- 34 vs. 52 +/- 12 ms), and QTc(d) (141 +/- 40 vs. 58 +/- 1 ms), (P < 0.05). In an experimental substudy, seven rats were maintained on K(+) and seven on Mg(2+)-free diet followed by normal diet. Experimental hypokalemia significantly increased QT(d) (10 +/- 4 to 37 +/- 7 ms), and QTc(d) (32 +/- 6 to 79 +/- 27 ms) (P < 0.05), whereas hypomagnesemia did not. Restoration of serum potassium resulted in normalization of dispersion (QT(d), 14 +/- 2; QTc(d), 34 +/- 6 ms). Hypokalemia increases the dispersion of ventricular repolarization that may be responsible for arrhythmias. Even though hyperkalemia, hypocalcemia, and hypercalcemia are known to affect ventricular repolarization, our study shows that they are not associated with increased dispersion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app