Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates.

Biochemistry 2001 March 28
Light chain, or AL, amyloidosis is a pathological condition arising from systemic extracellular deposition of monoclonal immunoglobulin light chain variable domains in the form of insoluble amyloid fibrils, especially in the kidneys. Substantial evidence suggests that amyloid fibril formation from native proteins occurs via a conformational change leading to a partially folded intermediate conformation, whose subsequent association is a key step in fibrillation. In the present investigation, we have examined the properties of a recombinant amyloidogenic light chain variable domain, SMA, to determine whether partially folded intermediates can be detected and correlated with aggregation. The results from spectroscopic and hydrodynamic measurements, including far- and near-UV circular dichroism, FTIR, NMR, and intrinsic tryptophan fluorescence and small-angle X-ray scattering, reveal the build-up of two partially folded intermediate conformational states as the pH is decreased (low pH destabilized the protein and accelerated the kinetics of aggregation). A relatively nativelike intermediate, I(N), was observed between pH 4 and 6, with little loss of secondary structure, but with significant tertiary structure changes and enhanced ANS binding, indicating exposed hydrophobic surfaces. At pH below 3, we observed a relatively unfolded, but compact, intermediate, I(U), which was characterized by decreased tertiary and secondary structure. The I(U) intermediate readily forms amyloid fibrils, whereas I(N) preferentially leads to amorphous aggregates. Except at pH 2, where negligible amorphous aggregate is formed, the amorphous aggregates formed significantly more rapidly than the fibrils. This is the first indication that different partially folded intermediates may be responsible for different aggregation pathways (amorphous and fibrillar). The data support the hypothesis that amyloid fibril formation involves the ordered self-assembly of partially folded species that are critical soluble precursors of fibrils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app