Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tumor hepatocytes and basement membrane-Producing cells specifically express two different forms of the endostatin precursor, collagen XVIII, in human liver cancers.

Endostatin is an endogenous inhibitor of angiogenesis and tumor growth in mice, which may be generated by proteolytic cleavage of collagen XVIII. In normal tissues, 2 variants of the endostatin precursor, namely the SHORT and LONG forms, regulate tissue specificity. We analyzed 53 human liver biopsies (18 hepatocellular carcinomas, 16 metastases of colorectal cancer, 3 cholangiocarcinomas, and 16 controls) by RNA dot blots, double-labeling immunohistochemistry, and in situ hybridization, using common and variant-specific probes. Tumor hepatocytes expressed the LONG form, whereas cholangiocarcinoma cells expressed the SHORT form, which was deposited in tumor basement membranes. Metastatic colorectal carcinoma cells did not express collagen XVIII. In the stromal compartment of primary and metastatic cancers, myofibroblasts and vascular endothelial cells expressed the SHORT form. Both basement membrane components, collagen IV and the SHORT collagen XVIII form, were codistributed and their mRNA levels strongly correlated (R =.75, P <.001). In addition, freshly isolated human hepatocytes expressed the LONG form and culture-activated stellate cells the SHORT form. Moreover, the full-length LONG form is a plasma protein. Thus, the LONG form is a hepatocyte-specific variant, and the SHORT form is a major component of the tumor extracellular matrix in primary and metastatic liver cancers. In the clinical context, the global expression of the endogenous endostatin precursor, collagen XVIII, in liver cancer results from the combined expression profiles of tumor cells, stromal cells, and nontumor hepatocytes at the advancing edge of the tumor, particular to each type of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app