In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Initiation and regulation of water deficit-induced abscisic acid accumulation in maize leaves and roots: cellular volume and water relations.

Water deficit-induced ABA accumulation in relation to cellular water relations was investigated in maize root and leaf tissues. While polyethylene glycol (PEG) treatment led to a significant increase of ABA content in both root and leaf tissues, ethylene glycol (EG), a permeable monomer of PEG, had no effect on ABA accumulation at similar or much lower osmotic potentials. A rapid and massive accumulation of ABA in leaf tissues occurred at a specific threshold of PEG 6000 concentration, about 20% (w/v), and closely coincided with the start of the tissue weight loss and the obvious decrease of cellular osmotic potential. Pretreatment with EG lowered the cell sap osmotic potential and also lowered the capability of both root and leaf tissues to accumulate ABA in response to further air-drying or PEG treatment. When samples were dehydrated and incubated under pressure, a method to maintain high water potential and pressure potential during dehydration, ABA accumulation was similar to those dehydrated and incubated under atmospheric pressure. Such results suggest that both the absolute water potential and pressure potential per se had no direct effects on the dehydration-induced ABA accumulation. The results have provided evidence that the initiation of ABA accumulation is related to the weight loss of tissues or changes in cellular volume rather than the cell water relation parameters, and the capability of ABA accumulation can be regulated by cellular osmotic potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app