JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

N-WASP, WAVE and Mena play different roles in the organization of actin cytoskeleton in lamellipodia.

WASP- and Ena/VASP-family proteins have been reported to regulate the cortical actin cytoskeleton as downstream effectors of the Rho-family small G-proteins Rac and Cdc42, but their functions are little understood. We observed the localization of the WASP family proteins, N-WASP and WAVE, and the Ena/VASP family protein, Mena, in protruding lamellipodia. Rat fibroblast cell line 3Y1 protruded lamellipodia on poly-L-lysine-coated substrate without any trophic factor. N-WASP and Cdc42 were concentrated along the actin filament bundles of microspikes but not at the tips. By immunofluorescence and immunoelectron microscopy, both WAVE and Mena were observed to localize at the lamellipodium edge. Interestingly, Mena tended to concentrate at the microspike tips but WAVE did not. At the edge of the lamellipodium, the correlation between the fluorescence from Mena and actin filaments stained with the specific antibody and rhodamine-phalloidin, respectively, was much higher than that between WAVE and actin filament. The Ena/VASP homology 2 (EVH2) domain of avian Ena, an avian homolog of Mena, was localized to the lamellipodium edge and concentrated at the tip of microspikes. The SCAR homology domain (SHD) of human WAVE was distributed along the lamellipodium edge. These results indicate that N-WASP, WAVE and Mena have different roles in the regulation of the cortical actin cytoskeleton in the protruding lamellipodium. WAVE and Mena should be recruited to the lamellipodium edge through SHD and the EVH2 domain, respectively, to regulate the actin polymerization near the cell membrane. N-WASP should regulate the formation of the actin filament bundle in addition to activating Arp2/3 complex in lamellipodium under the control of Cdc42.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app