Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ventilatory support by continuous positive airway pressure breathing improves gas exchange as compared with partial ventilatory support with airway pressure release ventilation.

UNLABELLED: In acute lung injury, airway pressure release ventilation (APRV) with superimposed spontaneous breathing improves gas exchange compared with controlled mechanical ventilation. However, the release of airway pressure below the continuous positive airway pressure (CPAP) level may provoke lung collapse. Therefore, we compared gas exchange and hemodynamics using a crossover design in nine pigs with oleic acid-induced lung injury during CPAP breathing and APRV with a release pressure level of 0 and 5 cm H(2)O. At an identical minute ventilation (V(E) 8 L/min) spontaneous breathing averaged 55%, 67%, and 100% of V(E) during the two APRV modes and CPAP, respectively. Because of the concept of APRV, mean airway pressure was highest during CPAP and lowest during APRV with a release pressure of 0 cm H(2)O. Shunt was reduced to almost half during CPAP (6.6% of Q(t)) compared with both APRV-modes (13.0% of Q(t)). Cardiac output and oxygen consumption, in contrast, were similar during all three ventilatory settings. Thus, in our lung injury model, CPAP was superior to partial ventilatory support using APRV with and without positive end-expiratory pressure. This may be attributable to beneficial effects of spontaneous breathing on gas exchange as well as to rapid lung collapse during the phases of airway pressure release below the CPAP level. These findings may suggest that the amount of mechanical ventilatory support using the APRV mode should be kept at the necessary minimum.

IMPLICATIONS: Oxygenation is better with continuous positive airway pressure breathing than with partial mechanical ventilatory support using airway pressure release ventilation. Therefore, mechanical ventilatory support achieved by a cyclic release of airway pressure during APRV should be kept at the minimum level that enables enough ventilatory support for patients to avoid respiratory muscle fatigue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app