JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho.

Semaphorins and their receptors, plexins, are widely expressed in embryonic and adult tissues. In general, their functions are poorly characterized, but in neurons they provide essential attractive and repulsive cues that are necessary for axon guidance [1-3]. The Rho family GTPases Rho, Rac, and Cdc42 control signal transduction pathways that link plasma membrane receptors to the actin cytoskeleton and thus regulate many actin-driven processes, including cell migration and axon guidance [4-7]. Using yeast two-hybrid screening and in vitro interaction assays, we show that Rac in its active, GTP bound state interacts directly with the cytoplasmic domain of mammalian and Drosophila B plexins. Plexin-B1 clustering in fibroblasts does not cause the formation of lamellipodia, which suggests that Rac is not activated. Instead, it results in the assembly of actin:myosin filaments and cell contraction, which indicates Rho activation. Surprisingly, these cytoskeletal changes are both Rac and Rho dependent. Clustering of a mutant plexin, lacking the Rac binding region, induced similar cytoskeletal changes, and this finding indicates that the physical interaction of plexin-B1 with Rac is not required for Rho activation. Our findings that plexin-B signaling to the cytoskeleton is both Rac and Rho dependent form a starting point for unraveling the mechanism by which semaphorins and plexins control axon guidance and cell migration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app