Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Inhibition of transforming growth factor beta signaling in MCF-7 cells results in resistance to tumor necrosis factor alpha: a role for Bcl-2.

Transforming growth factor beta (TGF-beta) is a multifunctional cytokine capable of regulating diverse cellular processes. In this study we investigated the effect of autocrine TGF-beta signaling on tumor necrosis factor (TNF) alpha-induced cell death. We abrogated the TGF-beta autocrine loop by overexpression of a truncated TGF-beta type II receptor in MCF-7 breast carcinoma cells and found that this generated resistance to TNF-alpha-induced cytotoxicity. To elucidate the molecular basis of the influence of TGF-beta on TNF-alpha-induced cytotoxicity, we evaluated the expression levels or activities of proteins involved in TNF-alpha signal transduction or the regulation of apoptosis in general in TGF-beta-responsive and TGF-beta-nonresponsive MCF-7 cells. We observed no significant difference in the expression of TNF-alpha receptors or the TNF receptor-associated death domain protein. In addition, downstream activation of nuclear factor kappaB by TNF-alpha was not altered in cells that had lost TGF-beta responsiveness. Analysis of members of the Bcl-2 family of apoptosis-regulatory proteins revealed that Bcl-X(L) and Bax expression levels were not changed by disruption of TGF-beta signaling. In contrast, the TGF-beta-nonresponsive cells expressed much higher levels of Bcl-2 protein and mRNA than did cells with an intact TGF-beta autocrine loop. Furthermore, restoration of a TGF-beta signal to MCF-7 cells that had spontaneously acquired resistance to TGF-beta caused a reduction in Bcl-2 protein expression. Taken together, our data indicate that loss of autocrine TGF-beta signaling results in enhanced resistance to TNF-alpha-mediated cell death and that this is likely to be mediated by derepression of Bcl-2 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app