Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration.

Hypertension 2001 Februrary
Obese hypertensive patients with cardiovascular risk factor clustering and increased risk for atherosclerotic disease have increased plasma nonesterified fatty acid levels, including oleic acid (OA), and a more active renin-angiotensin-aldosterone system. Vascular smooth muscle cell (VSMC) migration and proliferation participate in the development of atherosclerotic plaque. OA and angiotensin (Ang) II induce synergistic mitogenic responses in VSMCs through sequential signaling pathways dependent on the activation of protein kinase C (PKC), oxidants (reactive oxygen species, ROS), and extracellular signal-regulated kinase (ERK) activation. We tested the hypotheses that (1) OA and Ang II have additive or synergistic effects on VSMC migration and (2) PKC, ROS, and mitogen-activated protein kinase are critical signaling molecules. OA at 100 micromol/L increases VSMC migration 60+/-10% over control (P:<0.001). Ang II (10(-)(9) mol/L) increases VSMC migration by 62+/-13% and 73% over control, respectively (P:<0.01). Coincubation of cells with OA and Ang II produces a nearly additive increase in VSMC cell migration at 107+/-20% (P:<0.01). Increases in VSMC migration induced by OA alone and combined with Ang II were reduced by PKC inhibition and downregulation. VSMC migration in response to OA alone and with Ang II was also inhibited by N:-acetyl-cysteine, MEK inhibition, and ERK antisense. VSMC migration in response to OA alone or combined with Ang II is dependent on activation of PKC, ROS, and ERK activation, further raising the possibility that increased plasma nonesterified fatty acids and an activated renin-angiotensin-aldosterone system in subjects with the risk factor cluster contribute to accelerated atherosclerosis through a PKC, ROS, and ERK-dependent signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app