JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

SRYand architectural gene regulation: the kinetic stability of a bent protein-DNA complex can regulate its transcriptional potency.

Protein-directed DNA bending is proposed to regulate assembly of higher-order DNA-multiprotein complexes (enhanceosomes and repressosomes). Because transcriptional initiation is a nonequilibrium process, gene expression may be modulated by the lifetime of such complexes. The human testis-determining factor SRY contains a specific DNA-bending motif, the high-mobility group (HMG) box, and is thus proposed to function as an architectural factor. Here, we test the hypothesis that the kinetic stability of a bent HMG box-DNA complex can in itself modulate transcriptional potency. Our studies employ a cotransfection assay in a mammalian gonadal cell line as a model for SRY-dependent transcriptional activation. Whereas sex-reversal mutations impair SRY-dependent gene expression, an activating substitution is identified that enhances SRY's potency by 4-fold. The substitution (I13F in the HMG box; fortuitously occurring in chimpanzees) affects the motif's cantilever side chain, which inserts between base pairs to disrupt base pairing. An aromatic F13 cantilever prolongs the lifetime of the DNA complex to an extent similar to its enhanced function. By contrast, equilibrium properties (specific DNA affinity, specificity, and bending; thermodynamic stability and cellular expression) are essentially unchanged. This correlation between potency and lifetime suggests a mechanism of kinetic control. We propose that a locked DNA bend enables multiple additional rounds of transcriptional initiation per promoter. This model predicts the occurrence of a novel class of clinical variants: bent but unlocked HMG box-DNA complexes with native affinity and decreased lifetime. Aromatic DNA-intercalating agents exhibit analogous kinetic control of transcriptional elongation whereby chemotherapeutic potencies correlate with drug-DNA dissociation rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app