Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Low-dose vaccinia virus-mediated cytokine gene therapy of glioma.

Recombinant viruses can produce cytokines in tumors mobilizing an immune response to tumor cells. In this study, the authors investigated gene expression, in vivo antitumor efficacy, and safety of attenuated recombinant vaccinia virus (rVV) carrying murine cytokine genes interleukin (IL)-2 (rVV-mIL-2), IL-12 (rVV-mIL-12), and both IL-2 and IL-12 (rVV-2-12) in an athymic nude mice model. Significant tumor inhibition (p < 0.05) was observed in a preestablished subcutaneously implanted C6 glioma model using rVVs at doses ranging from 10(2) to 10(7) plaque forming units (PFU). An antitumor effect did not depend on the dose of the rVV-mIL-2 and rVV-mIL-12 viruses. All constructed rVVs induced a high level of cytokine expression in vitro and in vivo. Most groups injected with high doses of recombinant viruses encoding cytokine genes (10(5) to 10(7) PFU) showed signs of cytokine toxicity, whereas in the low-dose treatment groups (10(2) to 10(3) PFU) toxicity was greatly reduced. The antitumor activity of rVV-mIL-12 was associated with increases in both the percentage and number of natural killer T cells in the spleen. Local detection of interferon-y and tumor necrosis factor-alpha was also correlated with tumor growth arrest induced by the treatment. High-dose VV control vector per se induced tumor inhibition by activating Mac-1+ cells in blood, but the antitumor effect was less pronounced compared with rVV-carrying cytokine genes (p < 0.05). These results suggest that attenuated recombinant strains of VV at low doses may potentially be efficient vectors for cancer immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app