JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neurotransmitter distribution in the second trimester fetal human corpus striatum.

One experimental strategy that may offer hope in the neurodegenerative disorder Huntington's disease (HD) has been neural transplantation. In HD, most of the pathological changes occur in the corpus striatum. Fetal human striatal implants will most likely be the first transplant strategy attempted in clinical trials to replace lost neurons and/or prevent the degeneration of neurons destined to die. The temporal expression of neurotransmitters in the developing human corpus striatum is a key factor in determining the optimum age of transplantable tissue. To this end, an immunocytochemical analysis of various neurotransmitters was performed on second trimester human brains. Antibodies against acetylcholine, gamma-aminobutyric acid, enkephalin, neuropeptide-Y and substance P were used in ten human fetal brains ranging from 13 to 21 weeks gestation. The presence and pattern of distribution for these neurotransmitters varied in the different parts of the corpus striatum (globus pallidus, putamen, caudate nucleus). These results are compared to the already existing data for the adult human corpus striatum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app