COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons.

Integrons are genetic elements that acquire and exchange exogenous DNA, known as gene cassettes, by a site-specific recombination mechanism. Characterized gene cassettes consist of a target recombination sequence (attC site) usually associated with a single open reading frame coding for an antibiotic resistance determinant. The affiliation of multiresistant integrons (MRIs), which contain various combinations of antibiotic resistance gene cassettes, with transferable elements underlies the rapid evolution of multidrug resistance among diverse Gram-negative bacteria. Yet the origin of MRIs remains unknown. Recently, a chromosomal super-integron (SI) harboring hundreds of cassettes was identified in the Vibrio cholerae genome. Here, we demonstrate that the activity of its associated integrase is identical to that of the MRI integrase, IntI1. We have also identified equivalent integron superstructures in nine distinct genera throughout the gamma-proteobacterial radiation. Phylogenetic analysis revealed that the evolutionary history of the system paralleled that of the radiation, indicating that integrons are ancient structures. The attC sites of the 63 antibiotic-resistance gene cassettes identified thus far in MRIs are highly variable. Strikingly, one-fifth of these were virtually identical to the highly related yet species-specific attC sites of the SIs described here. Furthermore, antimicrobial resistance homologues were identified among the thousands of genes entrapped by these SIs. Because the gene cassettes of SIs are substrates for MRIs, these data identify SIs as the source of contemporary MRIs and their cassettes. However, our demonstration of the metabolic functions, beyond antibiotic resistance and virulence, of three distinct SI gene cassettes indicates that integrons function as a general gene-capture system for bacterial innovation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app