JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Elevated p21 mRNA level in skeletal muscle of DMD patients and mdx mice indicates either an exhausted satellite cell pool or a higher p21 expression in dystrophin-deficient cells per se.

Abnormalities in proliferation and differentiation of the dystrophin-deficient muscle are a controversial aspect of the pathogenesis of Duchenne muscular dystrophy (DMD). Analyses of molecules involved in cell cycle modulation do not exist in this context. Cells withdrawn from the cell cycle permanently express p21. The fact that p2 1, in contrast to other cell cycle proteins, is not diminished when myotubes are reexposed to growth media, allocates this cyclin-dependent kinase inhibitor a special function. Here we report for the first time statistically increased p21 mRNA levels in dystrophin-deficient muscle tissue. Only 42% of conventional RT-PCRs from six muscle samples of human controls yielded positive results but almost all skeletal muscle biopsy samples (87%) from DMD patients (n=5). For p21 mRNA quantification in murine muscle samples we were able to use the exact real-time TaqMan PCR method due to generally higher p21 mRNA levels than in human muscles. In addition, contamination with fibroblasts can be excluded for the murine samples because they do not demonstrate fibrosis at the age of 350 days but start to lose their regenerative capacity. In accord with the results in humans, we observed p21 mRNA levels in mdx mice that were approx. four times as high as those in control mice. Elevated p21 mRNA level may indicate a shift in cell composition towards differentiated p21 expressing cells as a result of an exhausted pool of undifferentiated, non-p21-expressing satellite cells due to previous cycles of de- and regeneration. Alternatively, dystrophin-deficient cells per se may express higher p21 levels for unknown reasons. Although we cannot distinguish between these possibilities, the eventual transfec tion of a patient's own satellite cells with p21 antisense oligonucleotides may enable the dystrophic process to be influenced.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app