Clinical Trial
Comparative Study
Controlled Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Quantitative computed tomography in the evaluation of spinal osteoporosis following spinal cord injury.

Disuse osteoporosis occurs in the lower extremities of patients with spinal cord injury (SCI). However, spinal osteoporosis is not usually observed in these patients. We investigated lumbar spine bone mineral density (BMD) in SCI patients using single energy quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA). Our study population consisted of 64 patients with long-standing SCI. Spine BMD (g/cm3) was assessed by QCT at four vertebrae ranging from T11 to L4 with single mid-vertebral CT slices 1 cm thick parallel to the vertebral end-plates. Confounding variables affecting normal trabecular bone pattern, such as compression fractures, surgical hardware or fat replacement, were excluded. For a subset of 29 patients, DXA values of the spine and femoral neck were also measured, and QCT and DXA Z-scores were compared On the average, the 64 SCI patients had Z-scores 2.0 +/- 1.2 below those of age-matched controls. In the subset of 29 patients with both QCT and DXA measurements, the QCT and DXA Z-scores were 2.4 +/- 1.1 below and 1.3 +/- 2.3 above the mean, respectively (p < 0.0001). Our results indicate that QCT reveals osteoporosis of the spine after SCI, in contrast to DXA. We postulate that QCT is more valuable for evaluating spinal osteoporosis following SCI than DXA and thus recommend QCT for spinal BMD studies in SCI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app