JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury.

Eicosanoids accumulation and formation of oxygen free radicals have been implicated in the pathogenesis of ischemia/reperfusion brain injury. In the present study, we examined whether green tea extract protects against ischemia/reperfusion-induced brain injury by minimizing eicosanoid accumulation and oxygen radical-induced oxidative damage in the brain. Green tea extract (0.5%) was orally administered to Wistar rats for 3 weeks before induction of ischemia. Ischemia was induced by the occlusion of middle cerebral arteries for 60 min and reperfusion was achieved for 24 h. Infarction volume in the ipsilateral hemisphere of ischemia/reperfusion animals was 114 +/- 16 mm(3) in the 0.5% green tea pretreated animals compared to 180 +/- 54 mm(3) in left hemisphere of nontreated animals. Green tea extract (0.5%) also reduced ischemia/reperfusion-induced eicosanoid concentration: Leukotriene C(4) (from 245 +/- 51 to186 +/- 22), prostoglandin E(2) (from 306 +/- 71 to 212 +/- 43) and thromboxane A(2) (327 +/- 69 to 251 +/- 87 ng/mg protein). Ischemia/reperfusion-induced increases of hydrogen peroxide level (from 688 +/- 76 to 501 +/- 99 nmole/mg protein), lipid peroxidation products (from 1010 +/- 110 to 820 +/- 70 nmole/mg protein) and 8-oxodG formation (from 1.3 +/- 0.3 to 0.8 +/- 0.2 ng/microg DNA, x10(-2)) were also reduced. Moreover, 0.5% green tea extract also reduced the apoptotic cell number (from 44 +/- 11 to 29 +/- 1 in the striatum, and from 72 +/- 11 to 42 +/- 5 apoptotic cells/high power field in the cortex region). Green tea extract pretreatment also promoted recovery from the ischemia/reperfusion-induced inhibition of active avoidance. The present study shows that the minimizing effect of green tea extract on the eicosanoid accumulation and oxidative damage in addition to the reduction of neuronal cell death could eventually result in protective effect on the ischemia/reperfusion-induced brain injury and behavior deficit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app