Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling.

G protein-coupled receptors (GPCRs) are seven transmembrane proteins that form the largest single family of integral membrane receptors. GPCRs transduce information provided by extracellular stimuli into intracellular second messengers via their coupling to heterotrimeric G proteins and the subsequent regulation of a diverse variety of effector systems. Agonist activation of GPCRs also initiates processes that are involved in the feedback desensitization of GPCR responsiveness, the internalization of GPCRs, and the coupling of GPCRs to heterotrimeric G protein-independent signal transduction pathways. GPCR desensitization occurs as a consequence of G protein uncoupling in response to phosphorylation by both second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). GRK-mediated receptor phosphorylation promotes the binding of beta-arrestins, which not only uncouple receptors from heterotrimeric G proteins but also target many GPCRs for internalization in clathrin-coated vesicles. beta-Arrestin-dependent endocytosis of GPCRs involves the direct interaction of the carboxyl-terminal tail domain of beta-arrestins with both beta-adaptin and clathrin. The focus of this review is the current and evolving understanding of the contribution of GRKs, beta-arrestins, and endocytosis to GPCR-specific patterns of desensitization and resensitization. In addition to their role as GPCR-specific endocytic adaptor proteins, beta-arrestins also serve as molecular scaffolds that foster the formation of alternative, heterotrimeric G protein-independent signal transduction complexes. Similar to what is observed for GPCR desensitization and resensitization, beta-arrestin-dependent GPCR internalization is involved in the intracellular compartmentalization of these protein complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app