Add like
Add dislike
Add to saved papers

Active-site characterization of Candida boidinii formate dehydrogenase.

Biochemical Journal 2001 March 2
NAD+-dependent formate dehydrogenase (FDH) from Candida boidinii was cloned and expressed to a high level in Escherichia coli (20% of soluble E. coli protein). Molecular modelling studies were used to create a three-dimensional model of C. boidinii FDH, based on a known structure of the Pseudomonas sp. 101 enzyme. This model was used for investigating the catalytic mechanism by site-directed mutagenesis. Eleven forms of C. boidinii FDH were characterized by steady-state kinetic analysis: the wild type as well as 10 mutants involving single (Phe-69-Ala, Asn-119-His, Ile-175-Ala, Gln-197-Leu, Arg-258-Ala, Gln-287-Glu and His-311-Gln) and double amino acid substitutions (Asn-119-His/His-311-Gln, Gln-287-Glu/His-311-Gln and Gln-287-Glu/Pro-288-Thr). The kinetic results of the mutant enzymes provide the first experimental support that hydrophobic patches, formed by Phe-69 and Ile-175, destabilize substrates and stabilize products. Also, the key role of Arg-258 in stabilization of the negative charge on the migrating hydride was established. Asn-119, besides being an anchor group for formate, also may comprise one of the hinge regions around which the two domains shift on binding of NAD+. The more unexpected results, obtained for the His-311-Gln and Gln-287-Glu/His-311-Gln mutants, combined with molecular modelling, suggest that steric as well as electrostatic properties of His-311 are important for enzyme function. An important structural role has also been attributed to cis-Pro-288. This residue may provide the key residues Gln-287 and His-311 with the proper orientation for productive binding of formate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app