Add like
Add dislike
Add to saved papers

Olfactory receptors on the antennae of the malaria mosquito Anopheles gambiae are sensitive to ammonia and other sweat-borne components.

Electrophysiological studies on female An. gambiae s.s. mosquitoes revealed a receptor neuron within a subpopulation of the antennal grooved-peg sensilla sensitive to the odour of incubated sweat, but not responding to fresh sweat. This receptor neuron was sensitive to ammonia as well, a sweat-borne component which attracts female An. gambiae in a windtunnel bioassay. Neurons innervating a different subpopulation of grooved-peg sensilla did not show a response to incubated sweat. In the latter sensilla, however, one type of neuron responded to water or water containing solutions, while another receptor neuron was inhibited when stimulated with dry air, ether or ethanol. Neurons innervating sensilla trichodea, a more abundant antennal type of olfactory sensillum, did not respond to fresh or incubated sweat at the doses offered. However, receptor neurons within the sensilla trichodea responded with excitation to several sweat-borne components. A subpopulation of the sensilla trichodea was innervated by neurons sensitive to geranyl acetone. A second subpopulation housed receptor neurons sensitive to indole. 3-Methyl-1-butanol and 6-methyl-5-hepten-2-one evoked excitation of receptor neurons within both subpopulations of sensilla trichodea. Neurons were most sensitive to indole and geranyl acetone with a threshold of 0.01%. These findings are discussed in the context of host-seeking behaviour.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app