JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Influence of reduced glutathione on the proliferative response of sulfamethoxazole-specific and sulfamethoxazole-metabolite-specific human CD4+ T-cells.

1. Hypersensitivity to the drug sulfamethoxazole (SMX) is thought to be a consequence of bioactivation to the hydroxylamine metabolite (SMX-NHOH) and further oxidation to the ultimate reactive metabolite, nitroso-sulfamethoxazole (SMX-NO). SMX-NO covalently modifies self proteins which in turn might be recognized as neo-antigens by T-cells. The antioxidant glutathione (GSH) is known to protect cells from reactive metabolites by conjugation and subsequent dissociation to SMX-NHOH and/or SMX. 2. To study the reactivity of T-cells to SMX metabolites and their respective role in the generation of drug-specific T-cells, we analysed the effect of GSH on the response of PBMC to SMX and its metabolites SMX-NHOH and SMX-NO. Furthermore, we monitored the proliferative response of drug-specific T-cell clones in the presence or absence of GSH. 3. We found that addition of GSH to peripheral blood mononuclear cells had no effect on the SMX-specific response but enhanced the proliferation to SMX-metabolites. The response of SMX-NO-specific T-cell clones was abrogated when GSH was present during the covalent haptenation of antigen presenting cells (APC). Conversely, SMX-specific T-cell clones gained reactivity through the conversion of SMX-NO to the parent drug by GSH. While GSH had no effect on the initial activation of T-cell clones, it prevented covalent binding to APCs, reduced toxicity and thereby led to proliferation of drug-specific T-cells to non-reactive drug metabolites. 4. Our data support the concept that in allergic individuals T-cells recognize the non-covalently bound parent drug rather than APC covalently modified by SMX-NO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app