Add like
Add dislike
Add to saved papers

Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation.

Endogenous peroxides and related reactive oxygen species may influence various steps in the contractile process. Single mouse skeletal muscle fibers were used to study the effects of hydrogen peroxide (H2O2) and t-butyl hydroperoxide (t-BOOH) on force and myoplasmic Ca2+ concentration ([Ca2+]i). Both peroxides (1010 to 105 M) decreased tetanic [Ca2+]i and increased force during submaximal tetani. Catalase (1 kU/ml) blocked the effect of H2O2, but not of t-BOOH. The decrease in tetanic [Ca2+]i was constant, while the effect on force was biphasic: A transitory increase was followed by a steady decline to the initial level. Myofibrillar Ca2+ sensitivity remained increased during incubation with either peroxide. Only the highest peroxide concentration (10 mM) increased resting [Ca2+]i and slowed the return of [Ca2+]i to its resting level after a contraction, evidence of impaired sarcoplasmic reticulum Ca2+ re-uptake. The peroxides increased maximal force production and the rate of force redevelopment, and decreased maximum shortening velocity. N-ethylmaleimide (25 mM, thiol-alkylating agent) prevented the response to 1 mM H2O2. These results show that myofibrillar Ca2+ sensitivity and cross-bridge kinetics are influenced by H2O2 and t-BOOH concentrations that approach those found physiologically, and these findings indicate a role for endogenous oxidants in the regulation of skeletal muscle function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app