Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Identification and characterization of a Smad2 homologue from Schistosoma mansoni, a transforming growth factor-beta signal transducer.

Smad proteins are essential intracellular signal transducers of the transforming growth factor-beta (TGF-beta) superfamily. The TGF-beta superfamily signals through phosphorylation and activation of R-Smad proteins, receptor-regulated Smads, by heteromeric complexes of ligand-specific type I and type II serine/threonine kinase receptors. R-Smads receive a signal from the activated receptor complex and transmit it to the nucleus. A cDNA was isolated that encodes a 649-amino acid protein found to be homologous to members of R-Smad subfamily with highest homology scored to clawed African frog and human Smad2. The Schistosoma mansoni homologue (SmSmad2) was overexpressed in bacteria as a Sj26-GST fusion protein and used to raise specific antibodies. The IgG fraction of the immunized rabbit serum identified 70- and 72-kDa protein bands in Western analysis of schistosome extracts. Treatment with alkaline phosphatase removed the 72-kDa band, which indicates that this band represents the phosphorylated form of schistosome Smad2. SmSmad2 was localized in the subtegument, parenchymal cells, and sex organs in both male and female worm cryosections. Similar results were also obtained from the analysis of the Smad2 mRNA distribution pattern revealed by in situ hybridization of adult worm pair paraffin sections. SmSmad2 mRNA levels were determined by reverse transcriptase-polymerase chain reaction in different mammalian host developmental stages and found to be constitutively expressed. SmSmad2 was also found to interact with a previously identified SmTbetaR-I, a serine/threonine type I kinase receptor. Furthermore, SmSmad2 was shown to undergo phosphorylation by constitutively active forms of SmTbetaR-I in vitro. In addition, SmSmad2 localized in the nuclei of mink lung epithelial cells upon treatment with TGF-beta(1). These data indicate that the SmSmad2 responds to the TGF-beta signals by interaction with receptor I, which phosphorylates it, whereupon it translocates into the nucleus presumably to regulate target gene transcription and consequently elicit a specific TGF-beta effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app