JOURNAL ARTICLE

In vitro and in vivo evidence for the long-term multilineage (myeloid, B, NK, and T) reconstitution capacity of ex vivo expanded human CD34(+) cord blood cells

L Kobari, F Pflumio, M Giarratana, X Li, M Titeux, B Izac, F Leteurtre, L Coulombel, L Douay
Experimental Hematology 2000, 28 (12): 1470-80
11146169
The aim of the present report is to describe clinically relevant culture conditions that support the expansion of primitive hematopoietic progenitors/stem cells, with maintenance of their hematopoietic potential as assessed by in vitro assays and the NOD-SCID in vivo repopulating capacity.CD34(+) cord blood (CB) cells were cultured in serum-free medium containing stem cell factor, Flt3 ligand, megakaryocyte growth and development factor, and granulocyte colony-stimulating factor. After 14 days, the primitive functions of expanded and nonexpanded cells were determined in vitro using clonogenic cell (colony-forming cells, long-term culture initiating cell [LTC-IC], and extended [E]-LTC-IC) and lymphopoiesis assays (NK, B, and T) and in vivo by evaluating long-term engraftment of the bone marrow of NOD-SCID mice. The proliferative potential of these cells also was assessed by determining their telomere length and telomerase activity. Levels of expansion were up to 1,613-fold for total cells, 278-fold for colony-forming unit granulocyte-macrophage, 47-fold for LTC-IC, and 21-fold for E-LTC-IC. Lymphoid B-, NK, and T-progenitors could be detected. When the expanded populations were transplanted into NOD-SCID mice, they were able to generate myeloid progenitors and lymphoid cells for 5 months. These primitive progenitors engrafted the NOD-SCID bone marrow, which contained LTC-IC at the same frequency as that of control transplanted mice, with conservation of their clonogenic capacity. Moreover, human CD34(+)CDl9(-) cells sorted from the engrafted marrow were able to generate CD19(+) B-cells, CD56(+)CD3(-) NK cells, and CD4(+)CD8(+)alphabetaTCR(+) T-cells in specific cultures. Our expansion protocol also maintained the telomere length in CD34(+) cells, due to an 8.8-fold increase in telomerase activity over 2 weeks of culture. These experiments provide strong evidence that expanded CD34(+) CB cells retain their ability to support long-term hematopoiesis, as shown by their engraftment in the NOD-SCID model, and to undergo multilineage differentiation along all myeloid and the B-, NK, and T-lymphoid pathways. The expansion protocol described here appears to maintain the hematopoietic potential of CD34(+) CB cells, which suggests its relevance for clinical applications.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
11146169
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"