Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers.

Keratinase is a serine protease produced by Bacillus licheniformis PWD-1 that effectively degrades keratin and confers the ability to grow on feathers to a protease-deficient B. subtilis strain. Studies presented herein demonstrate that B. licheniformis Carlsberg strain NCIMB 6816, which produces the well-characterized serine protease subtilisin Carlsberg, also degrades and grows on feathers. The PWD-1 and Carlsberg strains showed a similar time-course of enzyme production, and the purified serine proteases have similar enzymatic properties on insoluble azokeratin and soluble FITC-casein. Kinetic analysis of both enzymes demonstrated that they have high specificity for aromatic and hydrophobic amino acids in the P1 substrate position, although keratinase discriminates more than subtilisin Carlsberg against charged residues at this site. Nucleotide sequence analysis of the serine protease genes from B. licheniformis strains PWD-1, Carlsberg NCIMB 6816, ATCC 12759, and NCIMB 10689 showed that the kerA-encoded protease of PWD-1 differs from the others only by having V222, rather than A222, near the active site serine S220. Further, high-level expression of subE-encoded subtilisin from B. subtilis (78% similar to subtilisin Carlsberg) also confers growth on feathers on a protease-deficient B. subtilis strain. While strain PWD-1 and the kerA protease efficiently degrade keratin, keratin hydrolysis and growth on feathers is a property that can be conferred by appropriate expression of the major subtilisins, including the industrially produced enzymes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app