Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

K(ATP) channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection.

Many models of induced ischemic and epileptic tolerance have now been described in the brain. Although detailed mechanisms underlying such protections still remain largely unknown, induction of heat shock proteins is amongst the endogenous responses believed to play an important role in cellular defense mechanisms. This study reveals that the development of epileptic tolerance also coincides with the induction of the 70,000 mol. wt heat shock protein expression within the time window of protection. Adenosine agonists or ATP-sensitive potassium channel openers have also been shown to exert strong neuroprotective effects when injected shortly prior to a severe ischemic or epileptic insult. The present work shows that adenosine receptor activation and ATP-sensitive potassium channel opening induce 70,000 mol. wt heat shock protein expression in the rat hippocampus and are able to mimic neuroprotection driven by preconditioning. R-phenylisopropyladenosine, a purine agonist, or (-)cromakalim, an ATP-sensitive potassium channel opener, was administered three days prior to a lethal ischemic or epileptic episode to mimic preconditioning. Neurodegeneration was assessed using Cresyl Violet staining and cellular DNA fragmentation visualized by the terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling method. 70, 000 mol. wt heat shock protein expression was analysed by western blotting and immunohistochemistry. The results show a long-lasting neuroprotection induced by activation of adenosine receptors or ATP-sensitive K(+) channels as early as three days prior to induction of a severe ischemic or epileptic challenge. This protective effect is associated with enhanced 70,000 mol. wt heat shock protein expression also occurring three days following administration of R-phenylisopropyladenosine or (-)cromakalim. These findings support the idea that preconditioning doses of R-phenylisopropyladenosine and (-)cromakalim act as mild cellular stresses inducing neuroprotection in a manner similar to a mild kainate treatment prior to a lethal ischemic or severe epileptic insult three days later. They also suggest that a delayed 70,000 mol. wt heat shock protein expression induced by excitatory neuronal stresses such as short ischemia, mild kainic acid treatment or activation of adenosine receptors and ATP-sensitive potassium channels is predictive of neuronal survival against a subsequent lethal injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app