COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Treatment of hypertriglyceridemia by two diets rich either in unsaturated fatty acids or in carbohydrates: effects on lipoprotein subclasses, lipolytic enzymes, lipid transfer proteins, insulin and leptin.

BACKGROUND: There is lack of agreement on which dietary regimen is most suitable for treatment of hypertriglyceridemia, especially if high triglyceride concentrations are not due to obesity or alcohol abuse. We compared the effects on blood lipids of a diet high in total and unsaturated fat with a low-fat diet in patients with triglyceride concentrations of > 2.3 mmol/l.

METHODS: Nineteen non-obese male outpatients with triglycerides ranging from 2.30 to 9.94 mmol/l received two consecutive diets for 3 weeks each: first a modified high-fat diet (39% total fat, 8% SFA, 15% monounsaturated fatty acids, 1.6% marine n-3 polyunsaturated fatty acids), and then a low-fat diet (total fat 28%, carbohydrates 54%).

RESULTS: The high-fat diet significantly decreased triglycerides (-63%), total cholesterol (-22%), VLDL cholesterol (-54%), LDL cholesterol ( 16%), total apoC-III (-27%), apoC-III in apoB containing lipoproteins (apoC-III LpB; -31%) and in HDL (apoC-III nonLpB; -29%), apoE in serum (-33%) and apoB-containing lipoproteins (nonHDL-E; -42%), LpA-I (-16%), insulin (-36%), and leptin (-26%) and significantly increased the means of HDL cholesterol (+8%), LDL size (+6%), lipoprotein lipase (LPL, +11%), hepatic lipase (+13%), and lecithin: cholesterol acyltransferase (LCAT, +2%). The subsequent low-fat diet increased triglycerides (+63%), VLDL cholesterol (+19%), apoC-III (+23%), apoC-III LpB (+44%) apoC-III nonLpB (+17%), apoE (+29%) and nonHDL-E (+43%), and decreased HDL cholesterol (-12%), LPL (-3%), and LCAT (-3%). Changes in triglycerides correlated with changes in LPL activity and insulin levels.

CONCLUSIONS: In hypertriglyceridemic patients, a modified diet rich in mono- and n-3 polyunsaturated fatty acids is more effective than a carbohydrate-rich low-fat diet in correcting the atherogenic lipoprotein phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app