In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy.

BACKGROUND: Mechanical dilation of the human ventricle is known to induce arrhythmias, the underlying ionic mechanisms, however, remain to be clarified.

METHODS: Ventricular myocytes isolated from human, guinea-pig or rat hearts were stretched between the patch electrode and a glass stylus.

RESULTS: Local stretch prolonged the action potential, depolarized the resting membrane and caused extra systoles. Under voltage-clamp conditions, stretch activated several ionic current components. The most prominent current was a stretch activated current (I(SAC)) through non-selective cation channels. I(SAC) followed a linear voltage-dependence, reversed polarity close to 0 mV and was suppressed by 5 microM Gd(3+). During stretch, I(SAC) became steady within 200 ms. I(SAC) did not inactivate and it completely disappeared upon relaxation. Stretch-sensitivity was evaluated from the slope of I(SAC) versus amplitude of stretch. Stretch sensitivity was 75 pA/microm in myocytes from young (3 month), 143 pA/microm in myocytes from old (15 months), and 306 pA/microm in hypertrophied myocytes from old (15 months) spontaneously hypertensive animals. Stretch sensitivity was 262 pA/microm in hypertrophied myocytes from human failing hearts, and it was 143 pA/microm in guinea-pig ventricular myocytes.

CONCLUSIONS: Local stretch of adult single ventricular myocytes can induce arrhythmias that resemble surface-recordings from whole hearts. Stretch modulates multiple current components, I(SAC) being the current with the largest arrhythmogenic potential. Stretch-sensitivity of I(SAC) is higher in hypertrophied than in control myocytes as can be expected from the observation that hypertrophy and failure increase the risk of stretch-induced arrhythmias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app