JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protein kinase Cdelta activation by interleukin-1beta stabilizes inducible nitric-oxide synthase mRNA in pancreatic beta-cells.

Exposure of pancreatic islets to cytokines such as interleukin (IL)-1beta induces a variety of proinflammatory genes including type II nitric-oxide synthase (iNOS) which produces nitric oxide (NO). NO is thought to be a major cause of islet beta-cell dysfunction and apoptotic beta-cell death, which results in type I diabetes. Since protein kinase C (PKC) mediates some of the actions of cytokines in other cell types, our aim was to assess the role of PKC in IL-1beta-induced iNOS expression in pancreatic beta-cells. PKCdelta, but not PKCalpha, was specifically activated in the rat INS-1 beta-cell line by IL-1beta as assessed by membrane translocation. Moreover, iNOS expression and NO production were significantly attenuated by the PKCdelta specific inhibitor rottlerin and overexpression of a PKCdelta kinase-dead mutant protein. Conversely, overexpression of PKCdelta wild type protein significantly potentiated this response. These results were confirmed at the mRNA level by reverse transcriptase-polymerase chain reaction. However, a role at the level of transcriptional regulation appeared unlikely, since PKCdelta was not required for the activation of NF-kappaB, activating protein 1, and activating transcription factor 2 signaling pathways in response to IL-1beta. There was, however, a significant increase in iNOS mRNA stability mediated by PKCdelta wild type, while PKCdelta kinase-dead acted reciprocally, reducing iNOS mRNA stability. The results indicate that, in addition to transcriptional activation, mRNA stabilization is a key component of the mechanism by which IL-1beta stimulates iNOS expression in beta-cells and that PKCdelta plays an essential role in this process. PKCdelta activation may therefore have significant consequences with regard to cellular function and viability when beta-cells are exposed to IL-1beta and potentially other cytokines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app