Add like
Add dislike
Add to saved papers

Actin-dependent membrane association of a Drosophila epithelial APC protein and its effect on junctional Armadillo.

Current Biology : CB 2000 November 3
BACKGROUND: The adenomatous polyposis coli (APC) protein is an important tumour suppressor in the colon. It promotes the destabilisation of free cytoplasmic beta-catenin (the vertebrate homologue of the Drosophila protein Armadillo), a critical effector of the Wnt signalling pathway. The beta-catenin protein is also a component of adherens junctions, linking these to the actin cytoskeleton. In Drosophila epithelial cells, the ubiquitous form of APC, known as E-APC, is associated with adherens junctions. This association appears to be necessary for E-APC to function in destabilising Armadillo.

RESULTS: Using actin-depolymerising drugs, we established that an intact actin cytoskeleton is required for the association of E-APC with adherens junctions in the Drosophila embryo. From an analysis of profilin mutants, whose actin cytoskeleton is disrupted, we found that E-APC also requires actin filaments to associate with adhesive cell membranes in the ovary. Notably, conditions that delocalised E-APC from membranes, including a mutation in E-APC itself, caused partial detachment of Armadillo from adhesive membranes.

CONCLUSIONS: Actin filaments are continuously required for E-APC to be associated with junctional membranes. These filaments may serve as tracks for E-APC to reach the adherens junctions. The failure of E-APC to do so appears to affect the integrity of junctional complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app