Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Opposing actions of phosphatidylinositol 3-kinase and glycogen synthase kinase-3beta in the regulation of HSF-1 activity.

Elevated temperatures activate the survival promoters Akt and heat shock factor-1 (HSF-1), a transcription factor that induces the expression of heat shock proteins (HSPs), such as HSP-70. Because neuronal mechanisms controlling these responses are not known, these were investigated in human neuroblastoma SH-SY5Y cells. Heat shock (45 degrees C) rapidly activated Akt, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38, but only Akt was activated in a phosphatidylinositol 3-kinase (PI-3K)-dependent manner, as the PI-3K inhibitors LY294002 and wortmannin blocked Akt activation, but not ERK1/2 or p38 activation. Akt activation was not blocked by inhibition of p38 or ERK1/2, indicating the independence of these signaling systems. Heat shock treatment also caused a rapid increase in HSF-1 DNA binding activity that was partially dependent on PI-3K activity, as both the PI-3K inhibitors attenuated this response. Because Akt inhibits glycogen synthase kinase-3beta (GSK-3beta), an enzyme that facilitates cell death, we tested if GSK-3beta is a negative regulator of HSF-1 activation. Overexpression of GSK-3beta impaired heat shock-induced activation of HSF-1, and also reduced HSP-70 production, which was partially restored by the GSK-3beta inhibitor lithium. Thus, heat shock-induced activation of PI-3K and the inhibitory effect of GSK-3beta on HSF-1 activation and HSP-70 expression imply that Akt-induced inhibition of GSK-3beta contributes to the activation of HSF-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app