JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Direct recruitment of N-myc to target gene promoters.

The N-myc gene is amplified in 20-25% of human neuroblastomas, and this amplification serves as a poor prognostic factor. However, few genes have been determined to be direct targets of N-myc. Our current studies focused on identifying N-myc target genes, especially those affected in cells such as neuroblastomas that have high levels of N-myc protein. To pursue this goal, we performed differential expression screens with cell-culture systems containing high versus low levels of N-myc. The design of our experiments was such that we should identify genes both upregulated and downregulated by N-myc. Accordingly, we identified 22 genes upregulated by N-myc and one gene downregulated by N-myc. However, only five of these genes responded to increased N-myc levels in more than one system. Further analysis of the regulation of these genes required determining whether they were direct or indirect targets of N-myc. Therefore, we used a formaldehyde crosslinking and immunoprecipitation procedure to determine whether N-myc was bound to the promoters of these putative target genes in living cells. We found that low levels of N-myc were bound to the promoters of the telomerase and prothymosin genes in neuroblastoma cells having low amounts of N-myc but that the amounts of N-myc bound to these promoters greatly increased with overexpression of N-myc. However, the amount of max bound to the promoters was high before and after induction of N-myc. Therefore, our studies suggest that N-myc competes with other max partners for binding to target promoters. Our use of the chromatin immunoprecipitation assay suggests a molecular explanation for the consequences of amplification of the N-myc gene in neuroblastomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app