IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characteristics of ropivacaine block of Na+ channels in rat dorsal root ganglion neurons.

UNLABELLED: When used for epidural anesthesia, ropivacaine can produce a satisfactory sensory block with a minor motor block. We investigated its effect on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(+) currents in rat dorsal root ganglion (DRG) neurons to elucidate the mechanisms underlying the above effects. Whole-cell patch-clamp recordings were made from enzymatically dissociated neurons from rat DRG. A TTX-S Na(+) current was recorded preferentially from large DRG neurons and a TTX-R Na(+) current preferentially from small ones. Ropivacaine shifted the activation curve for the TTX-R Na(+) channel in the depolarizing direction and the inactivation curve for both types of Na(+) channel in the hyperpolarizing direction. Ropivacaine blocked TTX-S and TTX-R Na(+) currents, but its half-maximum inhibitory concentration (IC(50)) was significantly lower for the latter current (116 +/- 35 vs 54 +/- 14 microM; P: < 0.01); similar IC(50) values were obtained with the (R)-isomer of ropivacaine. Ropivacaine produced a use-dependent block of both types of Na(+) channels. Ropivacaine preferentially blocks TTX-R Na(+) channels over TTX-S Na(+) channels. We conclude that because TTX-R Na(+) channels exist mainly in small DRG neurons (which are responsible for nociceptive sensation), such selective action of ropivacaine could underlie the differential block observed during epidural anesthesia with this drug.

IMPLICATIONS: Whole-cell patch-clamp recordings of tetrodotoxin-sensitive and tetrodotoxin-resistant Na(+) currents in rat dorsal root ganglion neurons showed ropivacaine preferentially blocked tetrodotoxin-resistant Na(+) channels over tetrodotoxin-sensitive Na(+) channels. This could provide a desirable differential sensory blockade during epidural anesthesia using ropivacaine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app