JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Endurance training increases stimulation of uncoupling of skeletal muscle mitochondria in humans by non-esterified fatty acids: an uncoupling-protein-mediated effect?

Biochemical Journal 2000 November 2
Uncoupled respiration (UCR) is an essential property of muscle mitochondria and has several functions in the cell. We hypothesized that endurance training may alter the magnitude and properties of UCR in human muscle. Isolated mitochondria from muscle biopsies taken before and after 6 weeks of endurance exercise training (n=8) were analysed for UCR. To investigate the role of uncoupling protein 2 (UCP2) and UCP3 in UCR, the sensitivity of UCR to UCP-regulating ligands (non-esterified fatty acids and purine nucleotides) and UCP2 and UCP3 mRNA expression in muscle were examined. Oleate increased the mitochondrial oxygen consumption rate, an effect that was not attenuated by GDP and/or cyclosporin A. The effect of oleate was significantly greater after compared with before training. Training had no effect on UCP2 or UCP3 mRNA levels, but after training the relative increase in respiration rate induced by oleate was positively correlated with the UCP2 mRNA level. In conclusion, we show that the sensitivity of UCR to non-esterified fatty acids is up-regulated by endurance training. This suggests that endurance training causes intrinsic changes in mitochondrial function, which may enhance the potential for regulation of aerobic energy production, prevent excess free radical generation and contribute to a higher basal metabolic rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app