Add like
Add dislike
Add to saved papers

Effect of ankle position fixation on peak torque and electromyographic activity of the knee flexors and extensors.

The purpose of this study was to examine the effect of ankle position fixation on peak torque (PT) and electromyographic (EMG) activity of knee-joint muscles during isokinetic testing. Twelve female athletes performed isokinetic knee flexion and extension at 60 degrees and 180 degrees/s under two conditions: with the ankle fixed in a position of plantarflexion and with the ankle fixed in a position of dorsiflexion. Bipolar surface electrodes were placed on the vastus lateralis, vastus medialis, biceps femoris, medial hamstrings, and the lateral head of the gastrocnemius for determination of the root mean square of the EMG (rmsEMG) and the median frequency of the EMG (mfEMG). No significant differences in knee extensor PT were noted in either ankle position for each velocity tested. Significant differences were noted, however, in knee flexor PT (p < 0.05) at both 60 degrees and 180 degrees/s, with the greatest PT observed with the ankle fixed in dorsiflexion. Neither quadriceps, hamstrings, nor gastrocnemius rmsEMG activity was affected by ankle position; however, there was a significant difference in mfEMG for the gastrocnemius, with higher frequencies observed with the ankle fixed in plantarflexion (p < 0.01). These results suggest that ankle position effects knee flexor PT during open chain isokinetic movements. The reason for decreased knee flexor PT with the ankle fixed in plantarflexion is probably due to the gastrocnemius muscle being in a too shortened position, thereby preventing it from effectively producing force at the knee joint.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app