Intersample fluctuations in phosphocreatine concentration determined by 31P-magnetic resonance spectroscopy and parameter estimation of metabolic responses to exercise in humans

H B Rossiter, F A Howe, S A Ward, J M Kowalchuk, J R Griffiths, B J Whipp
Journal of Physiology 2000 October 15, 528 Pt 2: 359-69
The ATP turnover rate during constant-load exercise is often estimated from the initial rate of change of phosphocreatine concentration ([PCr]) using 31P-magnetic resonance spectroscopy (MRS). However, the phase and amplitude characteristics of the sample-to-sample fluctuations can markedly influence this estimation (as well as that for the time constant (tau) of the [PCr] change) and confound its physiological interpretation especially for small amplitude responses. This influence was investigated in six healthy males who performed repeated constant-load quadriceps exercise of a moderate intensity in a whole-body MRS system. A transmit- receive surface coil was placed under the right quadriceps, allowing determination of intramuscular [PCr]; pulmonary oxygen uptake (VO2) was simultaneously determined, breath-by-breath, using a mass spectrometer and a turbine volume measuring module. The probability density functions (PDF) of [PCr] and VO2 fluctuations were determined for each test during the steady states of rest and exercise and the PDF was then fitted to a Gaussian function. The standard deviation of the [PCr] and VO2 fluctuations at rest and during exercise (sr and sw, respectively) and the peak centres of the distributions (xc(r) and xc(w)) were determined, as were the skewness (gamma1) and kurtosis (gamma2) coefficients. There was no difference between sr and sw for [PCr] relative to the resting control baseline (s(r) = 1.554 %delta (s.d. = 0.44), s(w) = 1.514 %delta (s.d. = 0.35)) or the PDF peak centres (xc(r) = -0.013 %delta (s.d. = 0.09), xc(w) -0.197 %delta (s.d. = 0.18)). The standard deviation and peak centre of the 'noise' in VO2 also did not vary between rest and exercise (sr = 0.0427 l min(-1) (s.d. = 0.0104), s(w) = 0.0640 l min(-1) (s.d. = 0.0292); xc(r) = -0.0051 l min(-1) (s.d. = 0.0069), xc(w) 0.0022 l min(-1) (s.d. = 0.0034)). Our results demonstrate that the intersample 'noise' associated with [PCr] determination by 31P-MRS may be characterised as a stochastic Gaussian process that is uncorrelated with work rate, as previously described for VO2. This 'noise' can significantly affect the estimation of tau[PCr] and especially the initial rate of change of [PCr], i.e. the fluctuations can lead to variations in estimation of the initial rate of change of [PCr] of more than twofold, if the inherent 'noise' is not accounted for. This 'error' may be significantly reduced in such cases if the initial rate of change is estimated from the time constant and amplitude of the response.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"