JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Developmental regulation of neurogenesis in the pluripotent human embryonal carcinoma cell line NTERA-2.

Embryonal carcinoma (EC) cells provide a caricature of pluripotent embryonic stem (ES) cells and may be used as surrogates for investigating the mechanisms that regulate cell differentiation during embryonic development. NTERA-2 is a human EC cell line that differentiates in response to retinoic acid yielding cells that include terminally differentiated neurons. The expression of genes known to be involved in the formation of the vertebrate nervous system was examined during retinoic acid-induced NTERA-2 differentiation. Differentiation of these human EC cells into neurons could be divided into three sequential phases. During phase 1, in the first week of differentiation, hath1 mRNA showed a small transient increase that correlated with the rapid accumulation of nestin message, a marker of neuroprogenitors. Transcripts of nestin were quickly downregulated during phase 2 as expression of neuroD1, characteristic of neuroprogenitors exiting the cell cycle, was induced. A neural cell surface antigen, detected by the monoclonal antibody A2B5, was expressed by cells exiting the cell cycle, correlating with the expression of neuroD1 as the cells became post-mitotic. Markers of mature neural cells (e.g. synaptophysin and neuron-specific enolase) were subsequently increased during phase 3 and were maintained. This regulated pattern of gene expression and commitment to the neural lineage indicates that differentiation of NTERA-2 neurons in vitro follows a similar pathway to that observed by neural ectodermal precursors during vertebrate neurogenesis in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app