Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Metabolic and neuromuscular adaptations to endurance training in professional cyclists: a longitudinal study.

The aim of this longitudinal study was to analyze the changes in several metabolic and neuromuscular variables in response to endurance training during three defined periods of a full sports season (rest, precompetition and competition). The study population was formed by thirteen professional cyclists (age +/- SEM: 24+/-1 years; mean V(O2 max) approximately 74 ml kg(-1) min(-1)). In each testing session, subjects performed a ramp test until exhaustion on a cycle ergometer (workload increases of 25 W min(-1)). The following variables were recorded every 100 W until the tests: oxygen consumption (V(O2) in l min(-1)), respiratory exchange ratio (RER in V(CO2) V(O2)(-1)) and blood lactate, pH and bicarbonate concentration [HCO3(-)]. Surface electromyography (EMG) recordings were also obtained from the vastus lateralis to determine the variables: root mean square voltage (rms-EMG) and mean power frequency (MPF). RER and lactate values both showed a decrease (p<0.05) throughout the season at exercise intensities corresponding to submaximal workloads. In contrast, no significant differences were found in mean pH or [HCO(3-)]. Finally, rms-EMG tended to increase during the season, with significant differences (p<0.05) observed mainly between the competition and rest periods at most workloads. In contrast, precompetition MPF values increased (p<0.05) with respect to resting values at most submaximal workloads but fell (p<0.05) during the competition period. Our findings suggest that endurance conditioning induces the following general adaptations in elite athletes: (1) lower circulating lactate and increased reliance on aerobic metabolism at a given submaximal intensity, and possibly (2) an enhanced recruitment of motor units in active muscles, as suggested by rms-EMG data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app