JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Inherited disorders of renal magnesium handling.

The genetic basis and cellular defects of a number of primary magnesium wasting diseases have been elucidated over the past decade. This review correlates the clinical pathophysiology with the primary defect and secondary changes in cellular electrolyte transport. The described disorders include (1) hypomagnesemia with secondary hypocalcemia, an earlyonset, autosomal-recessive disease segregating with chromosome 9q12-22.2; (2) autosomal-dominant hypomagnesemia caused by isolated renal magnesium wasting, mapped to chromosome 11q23; (3) hypomagnesemia with hypercalciuria and nephrocalcinosis, a recessive condition caused by a mutation of the claudin 16 gene (3q27) coding for a tight junctional protein that regulates paracellular Mg(2+) transport in the loop of Henle; (4) autosomal-dominant hypoparathyroidism, a variably hypomagnesemic disorder caused by inactivating mutations of the extracellular Ca(2+)/Mg(2+)-sensing receptor, CASR: gene, at 3q13.3-21 (a significant association between common polymorphisms of the CASR: and extracellular Mg(2+) concentration has been demonstrated in a healthy adult population); and (5) Gitelman syndrome, a recessive form of hypomagnesemia caused by mutations in the distal tubular NaCl cotransporter gene, SLC12A3, at 16q13. The basis for renal magnesium wasting in this disease is not known. These inherited conditions affect different nephron segments and different cell types and lead to variable but increasingly distinguishable phenotypic presentations. No doubt, there are in the general population other disorders that have not yet been identified or characterized. The continued use of molecular techniques to probe the constitutive and congenital disturbances of magnesium metabolism will increase the understanding of cellular magnesium transport and provide new insights into the way these diseases are diagnosed and managed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app