Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes.

Nuclear factor-kappaB (NF-kappaB) regulates the transcription of a variety of genes involved in immune responses, cell growth, and cell death. However, the role of NF-kappaB in muscle biology is poorly understood. We recently reported that tumor necrosis factor-alpha (TNF-alpha) rapidly activates NF-kappaB in differentiated skeletal muscle myotubes and that TNF-alpha acts directly on the muscle cell to induce protein degradation. In the present study, we ask whether NF-kappaB mediates the protein loss induced by TNF-alpha. We addressed this problem by creating stable, transdominant negative muscle cell lines. C2C12 myoblasts were transfected with viral plasmid constructs that induce overexpression of mutant I-kappaBalpha proteins that are insensitive to degradation via the ubiquitin-proteasome pathway. These mutant proteins selectively inhibit NF-kappaB activation. We found that differentiated myotubes transfected with the empty viral vector (controls) underwent a drop in total protein content and in fast-type myosin heavy-chain content during 72 h of exposure to TNF-alpha. In contrast, total protein and fast-type myosin heavy-chain levels were unaltered by TNF-alpha in the transdominant negative cell lines. TNF-alpha did not induce apoptosis in any cell line, as assessed by DNA ladder and annexin V assays. These data indicate that NF-kappaB is an essential mediator of TNF-alpha-induced catabolism in differentiated muscle cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app