JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Fuzzy EMG classification for prosthesis control.

This paper proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app