Add like
Add dislike
Add to saved papers

An in situ respirometric technique to measure pollution-induced microbial community tolerance in soils contaminated with 2,4, 6-trinitrotoluene.

Long-term exposure to 2,4,6-trinitrotoluene (TNT) can induce changes in the structure and activities of soil microbial communities. Such changes may be associated with an elevated microbial tolerance. An in situ respirometry technique based on the analysis of the substrate-induced respiration response to freshly added TNT was used to examine soil microbial tolerance to TNT at the community level. The specific growth rate derived by fitting an exponential equation to respiration data was taken as the measurement endpoint. Microbial tolerance was evaluated using a tolerance index defined as the ratio of the specific growth rate at a spiking dose of 2000 microg TNT/g soil to that of the control with no spiked TNT. Three soils with long-term exposure histories (TNT level in soil: 1.5, 32, and 620 microg TNT/g, respectively) exhibited significantly higher microbial community tolerance to TNT than two uncontaminated control soils. A soil containing 29,000 microg TNT/g exhibited the highest tolerance. Findings from this study support the hypothesis that pollution-induced community tolerance can be used as a means of identifying those compounds that have exerted selective pressure on the community.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app