Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results.

Hippocampal-neocortical interactions in memory have typically been characterized within the "standard model" of memory consolidation. In this view, memory storage initially requires hippocampal linking of dispersed neocortical storage sites, but over time this need dissipates, and the hippocampal component is rendered unnecessary. This change in function over time is held to account for the retrograde amnesia (RA) gradients often seen in patients with hippocampal damage. Recent evidence, however, calls this standard model into question, and we have recently proposed a new approach, the "multiple memory trace" (MMT) theory. In this view, hippocampal ensembles are always involved in storage and retrieval of episodic information, but semantic (gist) information can be established in neocortex, and will survive damage to the hippocampal system if enough time has elapsed. This approach accounts more readily for the very long RA gradients often observed in amnesia. We report the results of analytic and connectionist simulations that demonstrate the feasibility of MMT. We also report a neuroimaging study showing that retrieval of very remote (25-year-old) memories elicits as much activation in hippocampus as retrieval of quite recent memories. Finally, we report new data from the study of patients with temporal lobe damage, using more sensitive measures than previously the case, showing that deficits in both episodic and spatial detail can be observed even for very remote memories. Overall, these findings indicate that the standard model of memory consolidation, which views the hippocampus as having only a temporary role in memory, is wrong. Instead, the data support the view that for episodic and spatial detail the hippocampal system is always necessary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app