Importance of membrane- or matrix-associated forms of M-CSF and RANKL/ODF in osteoclastogenesis supported by SaOS-4/3 cells expressing recombinant PTH/PTHrP receptors

K Itoh, N Udagawa, K Matsuzaki, M Takami, H Amano, T Shinki, Y Ueno, N Takahashi, T Suda
Journal of Bone and Mineral Research 2000, 15 (9): 1766-75
SaOS-4/3, a subclone of the human osteosarcoma cell line SaOS-2, established by transfecting the human parathyroid hormone/parathyroid hormone-related protein (PTH/PTHrP) receptor complementary DNA (cDNA), supported osteoclast formation in response to PTH in coculture with mouse bone marrow cells. Osteoclast formation supported by SaOS-4/3 cells was completely inhibited by adding either osteoprotegerin (OPG) or antibodies against human macrophage colony-stimulating factor (M-CSF). Expression of messenger RNAs (mRNAs) for receptor activator of NF-kappaB ligand/osteoclast differentiation factor (RANKL/ODF) and both membrane-associated and secreted forms of M-CSF by SaOS-4/3 cells was up-regulated in response to PTH. SaOS-4/3 cells constitutively expressed OPG mRNA, expression of which was down-regulated by PTH. To elucidate the mechanism of PTH-induced osteoclastogenesis, SaOS-4/3 cells were spot-cultured for 2 h in the center of a culture well and then mouse bone marrow cells were uniformly plated over the well. When the spot coculture was treated for 6 days with both PTH and M-CSF, osteoclasts were induced exclusively inside the colony of SaOS-4/3 cells. Osteoclasts were formed both inside and outside the colony of SaOS-4/3 cells in coculture treated with a soluble form of RANKL/ODF (sRANKL/sODF) in the presence of M-CSF. When the spot coculture was treated with sRANKL/sODF, osteoclasts were formed only inside the colony of SaOS-4/3 cells. Adding M-CSF alone failed to support osteoclast formation in the spot coculture. PTH-induced osteoclast formation occurring inside the colony of SaOS-4/3 cells was not affected by the concentration of M-CSF in the culture medium. Mouse primary osteoblasts supported osteoclast formation in a similar fashion to SaOS-4/3 cells. These findings suggest that the up-regulation of RANKL/ODF expression is an essential step for PTH-induced osteoclastogenesis, and membrane- or matrix-associated forms of both M-CSF and RANKL/ ODF are essentially involved in osteoclast formation supported by osteoblasts/stromal cells.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"