The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology

A Kanamori, S L Woo, C B Ma, J Zeminski, T W Rudy, G Li, G A Livesay
Arthroscopy 2000, 16 (6): 633-9

PURPOSE: Although it is well known that the anterior cruciate ligament (ACL) is a primary restraint of the knee under anterior tibial load, the role of the ACL in resisting internal tibial torque and the pivot shift test is controversial. The objective of this study was to determine the effect of these 2 external loading conditions on the kinematics of the intact and ACL-deficient knee and the in situ force in the ACL.

TYPE OF STUDY: This study was a biomechanical study that used cadaveric knees with the intact knee of the specimen serving as a control.

MATERIALS AND METHODS: Twelve human cadaveric knees were tested using a robotic/universal force-moment sensor testing system. This system applied (1) a 10-Newton meter (Nm) internal tibial torque and (2) a combined 10-Nm valgus and 10-Nm internal tibial torque (simulated pivot shift test) to the intact and the ACL-deficient knee.

RESULTS: In the ACL-deficient knee, the isolated internal tibial torque significantly increased coupled anterior tibial translation over that of the intact knee by 94%, 48%, and 19% at full extension, 15 degrees, and 30 degrees of flexion, respectively (P <.05). In the case of the simulated pivot shift test, there were similar increases in anterior tibial translation, i.e., 103%, 61%, and 32%, respectively (P <.05). Furthermore, the anterior tibial translation under the simulated pivot shift test was significantly greater than under an isolated internal tibial torque (P <.05). Under the simulated pivot shift test, the in situ forces in the ACL were 83 +/- 16 N at full extension and 93 +/- 23 N at 15 degrees of knee flexion. These forces were also significantly higher when compared with those for an isolated internal tibial torque (P <.05).

CONCLUSION: Our data indicate that the ACL plays an important role in restraining coupled anterior tibial translation in response to the simulated pivot shift test as well as under an isolated internal tibial torque, especially when the knee is near extension. These findings are also consistent with the clinical observation of anterior tibial subluxation during the pivot shift test with the knee near extension.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"