JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Effects of increased oxygen breathing in a volume controlled hemorrhagic shock outcome model in rats.

Resuscitation 2000 August 2
It is believed that victims of traumatic hemorrhagic shock (HS) benefit from breathing 100% O(2). Supplying bottled O(2) for military and civilian first aid is difficult and expensive. We tested the hypothesis that increased FiO(2) both during severe volume-controlled HS and after resuscitation in rats would: (1) increase blood pressure; (2) mitigate visceral dysoxia and thereby prevent post-shock multiple organ failure; and (3) increase survival time and rate. Thirty rats, under light anesthesia with halothane (0. 5% throughout), with spontaneous breathing of air, underwent blood withdrawal of 3 ml/100 g over 15 min. After HS phase I of 60 min, resuscitation phase II of 180 min with normotensive intravenous fluid resuscitation (shed blood plus lactated Ringer's solution), was followed by an observation phase III to 72 h and necropsy. Rats were randomly divided into three groups of ten rats each: group 1 with FiO(2) 0.21 (air) throughout; group 2 with FiO(2) 0.5; and group 3 with FiO(2) 1.0, from HS 15 min to the end of phase II. Visceral dysoxia was monitored during phases I and II in terms of liver and gut surface PCO(2) increase. The main outcome variables were survival time and rate. PaO(2) values at the end of HS averaged 88 mmHg with FiO(2) 0.21; 217 with FiO(2) 0.5; and 348 with FiO(2) 1. 0 (P<0.001). During HS phase I, FiO(2) 0.5 increased mean arterial pressure (MAP) (NS) and kept arterial lactate lower (P<0.05), compared with FiO(2) 0.21 or 1.0. During phase II, FiO(2) 0.5 and 1. 0 increased MAP compared with FiO(2) 0.21 (P<0.01). Heart rate was transiently slower during phases I and II in oxygen groups 2 and 3, compared with air group 1 (P<0.05). During HS, FiO(2) 0.5 and 1.0 mitigated visceral dysoxia (tissue PCO(2) rise) transiently, compared with FiO(2) 0.21 (P<0.05). Survival time (by life table analysis) was longer after FiO(2) 0.5 than after FiO(2) 0.21 (P<0. 05) or 1.0 (NS), without a significant difference between FiO(2) 0. 21 and 1.0. Survival rate to 72 h was achieved by two of ten rats in FiO(2) 0.21 group 1, by four of ten rats in FiO(2) 0.5 group 2 (NS); and by four of ten rats of FiO(2) 1.0 group 3 (NS). In late deaths macroscopic necroses of the small intestine were less frequent in FiO(2) 0.5 group 2. We conclude that in rats, in the absence of hypoxemia, increasing FiO(2) from 0.21 to 0.5 or 1.0 does not increase the chance to achieve long-term survival. Breathing FiO(2) 0.5, however, might increase survival time in untreated HS, as it can mitigate hypotension, lactacidemia and visceral dysoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app